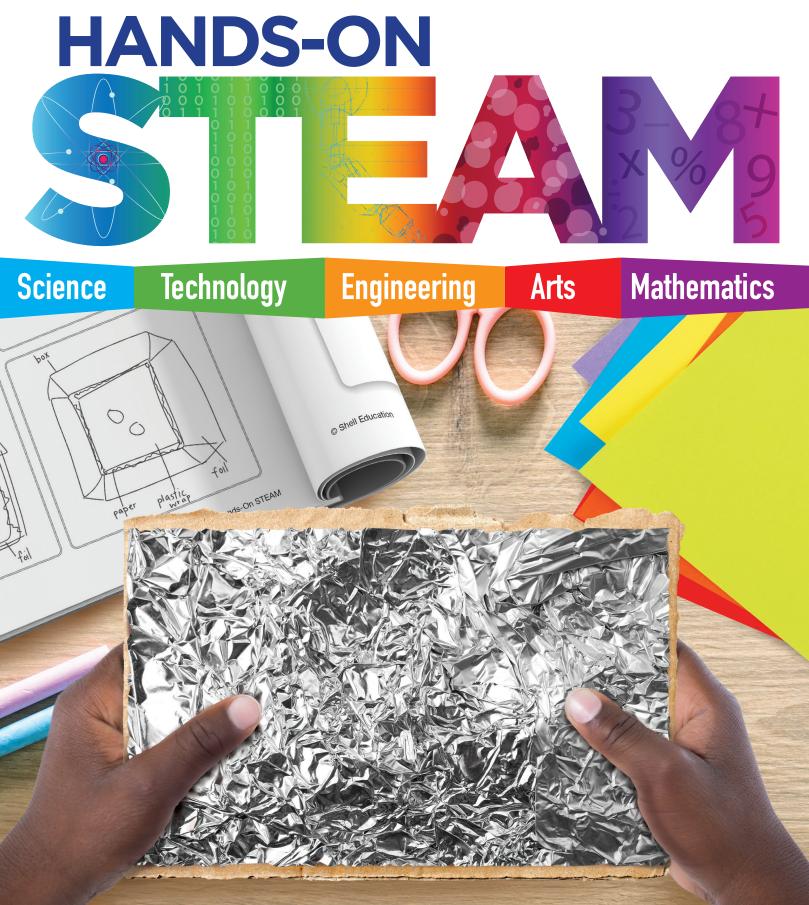
Sample Pages from

Thanks for checking us out. Please call us at 800-858-7339 with questions or feedback or to order this product. You can also order this product online at **www.tcmpub.com/shell-education**.

For correlations to state standards, please visit **www.tcmpub.com/teachers/correlations**



800-858-7339 • www.tcmpub.com/shell-education

Table of Contents

Introduction

Research
The Importance of STEAM Education4
Defining STEAM5
The Engineering Design Process
How to Facilitate Successful STEAM Challenges7
How to Use This Resource9
Unit Structure Overview9
Pacing Options10
Teaching Support Pages11
Student Pages
Assessment Options14
Standards Correlations15

180 Days of Practice

Physical Science

Unit 1: Energy and Motion17	
Unit 2: Gravity and Space	
Unit 3: Thermal Energy51	

Life Science

Unit 4: Animal Parents	
Unit 5: Body Systems	
Unit 6: Cells	
Unit 7: Plant Reproduction119	

Earth and Space Science

Unit 8: Air and Weather	136
Unit 9: Earth's Materials	153
Unit 10: Ocean Currents	170
Unit 11: Plate Tectonics	.187
Unit 12: The Water Cycle	204

Appendixes

STEAM Challenge Rubric	.221
Summative Assessment	.222
Engineering Design Process	.223
Digital Resources	.224
References Cited	.224

Plate Tectonics Teaching Support

Overview of Unit Activities

Students will learn about and explore plate tectonics through the following activities:

- reading about the theory of plate tectonics
- reading about and studying pictures of the effects of plate movements
- piecing together Earth's plates
- creating models of Earth's layers
- analyzing data and mapping major earthquakes
- creating vertical evacuation areas for tsunamis

Materials Per Group

Week 1	
 basic school supplies 	 paint (water-based or acrylic)
construction paper	 toothpicks
 foam hemisphere 	
STEAM Challenge	
 basic school supplies 	• sand (one bag)
• foil	• straws (10–15)
 index cards (5–10) 	• sugar cubes (10)
 large pan with high sides 	• washers (2–3)
modeling clay	• water to fill pan
plastic wrap	 toothpicks (15–20)

Setup and Instructional Tips

- Testing Days: Testing may result in water on floors and tables. Prepare for this as needed.
- **STEAM Challenge:** The challenge can be done individually or in groups. Students working in groups should sketch their own designs first. Then, have them share designs in groups and choose one together.

188

Discussion Questions

- Why do you think people live in areas that are likely to have more earthquakes or tsunamis? Why don't they move to a place that does not have so many?
- How might people have explained earthquakes and tsunamis long ago?
- How can people prepare for earthquakes and tsunamis?
- How have Earth's plates changed over time?
- What evidence is there of Earth's moving plates?

Additional Notes

• **Possible Misconception:** Tsunamis are always very tall waves. **Truth:** Most tsunamis are less than 10 feet (3 m) high when they reach land. Tsunamis are dangerous because of their speed and volume.

Scaffolding and Extension Suggestions

- Support students as needed by offering lower-level criteria, such as holding fewer sugar cubes or creating smaller "tsunamis" during testing.
- Encourage students to research recent tsunamis and the damage they caused.

Answer Key

Week 1 Day 1

- **1.** D
- **2.** D

Week 1 Day 2

- 1. Two plates are moving toward each other; when plates collide, they sometimes cause the compressed land between them to move up and form mountains.
- **2.** Plate movements can cause earthquakes. Sometimes a plate is pushed upward. This displaces ocean water and sends energy in waves toward land.

Week 1 Day 5

1. Earthquakes are located on the borders between tectonic plates. That is because people are living above where plates are sliding past each other or colliding or separating. They feel this plate tectonic movement in the form of earthquakes.

Weeks 2 & 3

See STEAM Challenge Rubric on page 221.

Name: _

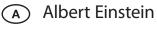
Date: ___

Directions: Read the text, and choose the best answer for each question.

We now know that the continents move. But it was not always known. A famous scientist, named Alfred Wegener, suggested that it was because the continents used to be one big continent that broke apart.

Evidence supported this theory. Some of the plant and animal fossils found along the coasts of the matching jigsaw puzzle pieces were the same. Also, matching rock layers were found on each coast, suggesting the rocks broke away from each other.

Eventually, scientists came to agree that the continents were once one big landmass. We call that original big piece Pangaea. Earth's surface is broken into about 20 pieces. Both the land and the oceans sit on top of these pieces. The pieces are called tectonic plates.


Week

Day 1

Permian period 225 million years ago Triassic period 200 million years ago Jurassic period 150 million years ago Cretaceous period 65 million years ago

Present day

1. Which scientist first proposed that the continents were once all joined together?

B) Ellen Ochoa

c George Washington Carver

- D Alfred Wegener
- 2. What evidence supports the hypothesis that the continents were once connected?
 - A People can see the continents moving with their own eyes.
 - B Some fossils in South America were the same as fossils in Africa.
- © Some rock layers in South America were identical to rock layers in Africa.
- **D** B and C
- E A and C

Name:

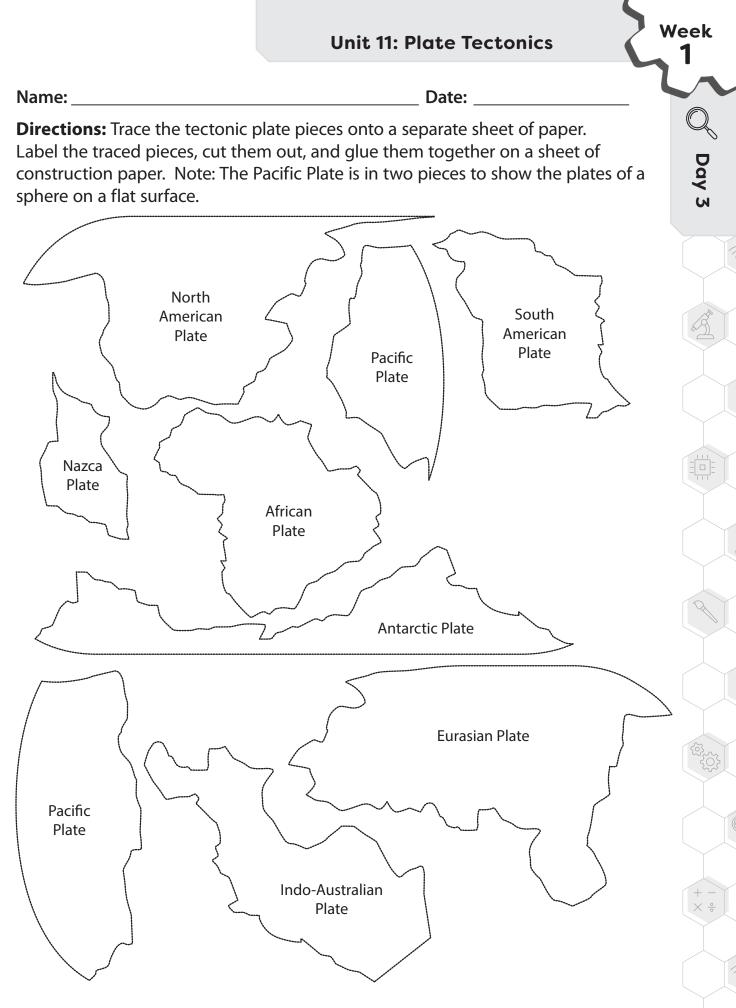
Date:

Day 2 🖏

Week

Directions: Read the text, and study the picture. Then, answer the questions.

It is very hot beneath Earth's crust—hot enough that even solid rock flows. As rocks heat up, they rise. As they rise toward Earth's crust, they cool and then start to sink again. This causes convection currents in the mantle. The mantle is the layer of Earth below the crust. As these currents move, they cause the plates above them to move.

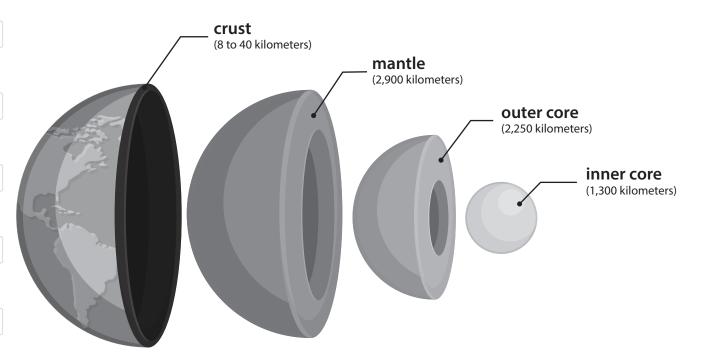

Tectonic plates move in different directions. Some are moving toward each other. This can cause mountains to form. Some plates are moving away from each other, which can cause valleys to form. In other cases, two plates are sliding past each other.

When tectonic plates move, we sometimes feel it in the form of earthquakes. The energy spreads as a wave. The waves may cause the ground to shake back and forth, move up and down, or move in a circular motion. Earthquakes in the ocean can cause tsunamis. When a plate is pushed upward, it displaces a large amount of water. The energy travels in waves across the ocean until it reaches land.

Volcanoes tend to erupt along plate boundaries too. This is because there's an opening in Earth's crust where magma can get through to the surface. Volcanoes are especially common where two plates are separating or where one plate is sliding under the other.

- **1.** Mount Everest is the world's tallest mountain, and it is getting taller. It is located along a tectonic plate boundary. What is one explanation for how or why it continues to grow?
- 2. How can tectonic plate movement cause tsunamis?

Name: _


Week

Day 4

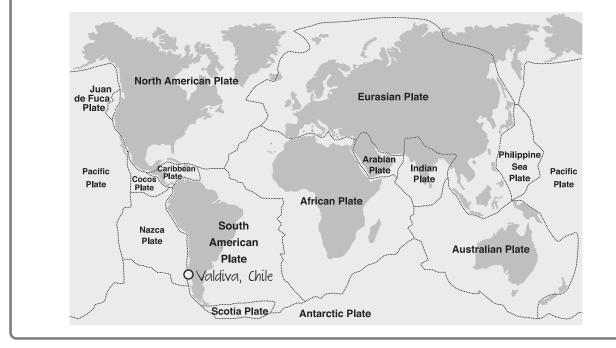
Date:

Directions: To understand the theory of plate tectonics, it helps to know the structure of the interior of Earth. Study the diagram. Then, use a foam hemisphere to paint a model of Earth. Label the layers with toothpick flags. Then, draw or paint the outlines of the major tectonic plates on one half of the surface of Earth.

Structure of the Earth

Try to make the layers proportional to their thickness relative to the other layers. For example, the mantle should be the thickest layer. Add a flag to show where you live.

Name: _


Date: ___

Directions: Read the text, and complete the task. Then, answer the questions.

Mapping the world's tectonic plates allows us to better understand why earthquakes are more likely in some areas than others. This helps us predict where future earthquakes are most likely to occur. The table shows the cities with some of the world's major recorded earthquakes.

Task: Mark the locations on the map of tectonic plates. Use another map to help you. The first one is done for you.

Year	Location
1960	Valdivia, Chile
1906	San Francisco, California, USA
2011	Under the ocean close to Sendai, Japan
1964	Near Anchorage, Alaska, USA
2004	Under the ocean, close to Sumatra, Indonesia
2010	Near Port-au-Prince, Haiti

1. What conclusions can you make about the locations of major earthquakes?

Week

Week

Day 1

Date:

Directions: Read the text. Record the challenge criteria and constraints in the chart. Summarize the challenge in your own words. Then, write any questions you need answered before you begin the challenge.

The Challenge

Understanding earthquakes and tsunamis helps engineers find better ways to build structures that can withstand events. They study the local area to learn about the specific needs. Engineers also study materials, shapes, and features that help buildings to withstand these events. For example, sometimes designing ways for water to move past or through buildings can prevent flood waters from knocking down or carrying buildings away.

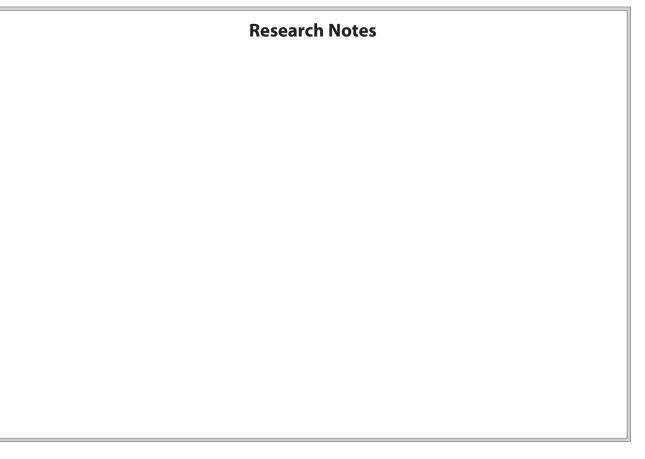
Your challenge is to build a vertical evacuation area for a community that could be hit by tsunamis. Instead of attempting to flee an area, residents can climb the structure to safety. You will place your structure on a pile of sand and simulate a tsunami. Your structure must withstand the force of the water. It must have room for and support five sugar cubes (people) and keep them dry. The base must fit on the sandy area you will create in one half of a large pan. You will simulate the water movement in a tsunami by lifting the end 1 inch (2.5 cm) high and dropping it.

Criteria for a Successful Vertical Evacuation Structure	Constraints

*Note: Your teacher may have additional constraints, such as time limits. You may add criteria if you choose to set additional goals.

My Summary

My Questions


Week

- 🔯 🕫 Day 2

Name: _

Date:

Directions: Research ways engineers design structures to withstand flooding and shaking. Your design is a vertical evacuation, so also research ways engineers build tall structures. Record some of your findings with words and pictures of example structures. Then, brainstorm and record other notes, ideas, or questions for your design. Discuss ideas with others, and add to your brainstorming.

My Vertical Evacuation Brainstorming

195

Unit 11: F	Plate Te	ctonics
------------	----------	---------

Date: _

Directions: Sketch two or more designs for your vertical evacuation structure. Label the parts and materials. Where appropriate, make note of the purpose for each part. Circle the design you think will work best. Or, circle the ideas you will combine from multiple designs. Then, answer the question.

 $\times \frac{\circ}{\circ}$

Name: _

Date: _____

Directions: Plan the tools and materials you will need. Plan your steps. Then, gather your materials, and build your vertical evacuation structure. Record notes as you build.

Tools and Materials

Item Needed	Amount Needed	Item Needed	Amount Needed

Vertical Evacuation Structure Building Plan

	Job, Task, or Role	Group Member(s)
1		
2		
3		
4		
5		
6		
7		
8		

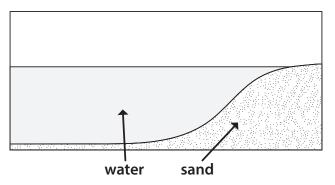
Additional Notes

(surprises, problems, solutions, etc.)

Week

Day 4

Name: _


Neek

ریک ارک

Day 5

Date:

Directions: Set up your test as shown in the diagram. Place your structure on the sand. Place five sugar cubes on or in your structure. Test your vertical evacuation structure by lifting the opposite end 1 inch (2.5 cm) high and dropping it. (If that did not create enough water to cover the sand, try lifting the end higher). Record the results. Then, answer the questions.

1. Draw what your structure looked like after the water settled.

- **2.** Did your structure remain standing and intact? yes no
- **3.** Did your sugar cubes remain dry and on the structure? yes no
- 4. What did you notice happened to the sand as a result of the tsunami?
- **5.** Was your vertical evacuation structure design a success? Explain your evidence.

Week

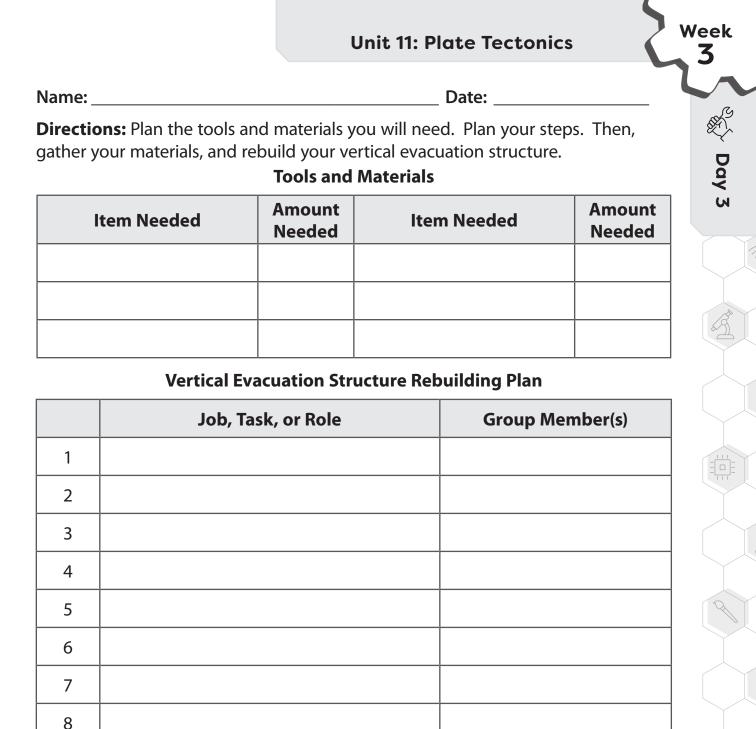
Date:			
vill improve it. Conduct additional research if needed. Vhat about your vertical evacuation structure worked well? Vhat flaws were revealed during testing? Vhat flaws were revealed during testing? Vhat design ideas did you see from others that you might want to try? Vhat design ideas did you see from others that you might want to try? W a star next to one or more ways you will improve your design. My first design did not meet all the criteria because To improve it, I will Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.	ime:	Date:	
Vhat flaws were revealed during testing? Vhat design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did not meet all the criteria because To improve it, I will Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.	-	•	lan how
Vhat design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? What design ideas did you see from others that you might want to try? Make it support ideas did not meet all the criteria because Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.	What about your verti	ical evacuation structure worked well?	
w a star next to one or more ways you will improve your design. My first design did not meet all the criteria because To improve it, I will Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.	. What flaws were revea	aled during testing?	
My first design did not meet all the criteria because To improve it, I will Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.	What design ideas did	you see from others that you might want to	o try?
To improve it, I will Make it support 10 sugar cubes and keep them dry. Include a way for people to get up to and down from the evacuation area.			
Include a way for people to get up to and down from the evacuation area.			
	Include a way for pe		
My own idea:	My own idea:		

Unit	11:	Plate	Tectonics
------	-----	-------	-----------

Week

<u>رِنْ</u>

Day 2


 $\times \frac{\circ}{\circ}$

Date:

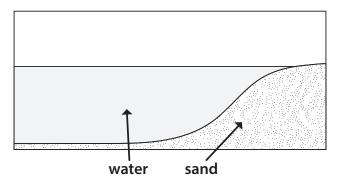
Directions: Plan your new vertical evacuation structure design. Then, sketch a few new designs. Label the parts and materials. Mark what is new or different, and circle the design you think will work best. Then, complete the sentence.

In my redesign, I will...

add	
remove	
change _	

Additional Notes

(surprises, problems, solutions, etc.)


Unit	11:	Plate	Tectonics
------	-----	-------	-----------

Veek

Day 4 🕅 😳

Date:

Directions: Set up your test the same way as before (see diagram). Place your new structure on the sand. Place 5–10 sugar cubes on or in your structure. Test your vertical evacuation structure by lifting the opposite end 1 inch (2.5 cm) high and dropping it. (If that did not create enough water to cover the sand, try lifting the end higher). Record the results. Then, answer the questions.

1. Draw what your structure looked like after the water settled.

- **2.** Did your structure remain standing and intact? yes no
- **3.** Did your sugar cubes remain dry and on the structure? yes no
- **4.** Did your new design work better? Explain your evidence.

5. Do you think your design would hold up in a real tsunami? Why or why not?

Week

1

Nan	ne: Date:
Dire	ections: Answer the questions to reflect on your vertical evacuation structure.
1.	What was your favorite part of this challenge?
2.	Why is testing an important part of the engineering design process?
3.	What did you learn from this challenge?
4.	Would you want to be an engineer who designs structures to withstand events such as tsunamis? Why or why not?