Sample Pages from

Thanks for checking us out. Please call us at 877-777-3450 with questions or feedback, or to order this product. You can also order this product online atwww.tcmpub.com/shell-education.

For correlations to State Standards, please visit:
www.tcmpub.com/teachers/correlations
Shell Professional and Strategy Resources: www.tcmpub.com/teachers/professional-resources/correlations

## Practicing for Today's Tests

## 要 4 <br> Mathematics

## Table of Contents

Introduction
Today's Next Generation Tests ..... 4
Making It Meaningful ..... 10
Practice Exercises
Practice Exercise 1 ..... 13
Practice Exercise 2 ..... 17
Practice Exercise 3 ..... 21
Practice Exercise 4 ..... 25
Practice Exercise 5 ..... 29
Practice Exercise 6 ..... 33
Practice Exercise 7 ..... 37
Practice Exercise 8 ..... 41
Practice Exercise 9 ..... 45
Practice Exercise 10 ..... 49
Practice Exercise 11 ..... 53
Practice Exercise 12 ..... 57
Practice Exercise 13 ..... 61
Practice Exercise 14 ..... 65
Practice Exercise 15 ..... 69
Practice Exercise 16 ..... 73
Practice Exercise 17 ..... 77
Practice Exercise 18 ..... 81
Practice Exercise 19 ..... 85
Practice Exercise 20 ..... 89
Practice Exercise 21 ..... 93
Practice Exercise 22 ..... 97
Practice Exercise 23 ..... 101
Practice Exercise 24 ..... 105
Practice Exercise 25 ..... 109
Appendices
Appendix A: References Cited ..... 113
Appendix B: Question Types ..... 114
Appendix C: Top Tips: Preparing for Today's Tests ..... 118
Appendix D: Mathematics Tools ..... 120
Appendix E: Answer Key ..... 122

## Today's Next Generation Tests (cont)

## What's Different about Today's Standards? (cont.)

This overview illustrates key mathematics concepts and thinking skills associated with each of the content strands. It deconstructs the critical understandings of the strands to identify the important "what" (concepts) and "how" (thinking skills) for teachers and students. Notice the repeated use of several higher-level thinking skills in many different content strands.

| Strand |
| :---: | :--- | :--- | :--- | :--- |

[^0]
## Making It Meaningful

This section has been included to make this book's test practice more meaningful. The purpose of this section is to provide sample guiding questions framed around a specific practice exercise. This will serve as a meaningful and real-life application of test practice. Each guiding question focuses on strands of mathematics as well as test-taking strategies. The making-it-meaningful questions may be used with students as a teacher-led think aloud or to individually assess how students are approaching and understanding complex mathematical ideas and concepts. The framework used in this model serves as a template for how to approach all the practice exercises in this product. This template supports educators in preparing students for today's tests and helps make meaning of mathematical standards used in classrooms today.


For all open-ended problems, students should ask themselves the following questions:
"Could I explain this problem to someone else? Do I have to ask any questions to understand the problem better? What is my plan to solve this problem? How can I model my thinking? Is my plan working, or do I need to make adjustments? Does my solution make sense?"

Name: $\qquad$ Date: $\qquad$

## Practice Exercise 16

Directions: Read and solve each problem carefully.

1. Which division problem is represented by $\frac{6}{7}$ ?
(A) 6 divided by 7
(B) 7 divided by 6
(c) 13 divided by 6
(D) 13 divided by 7
2. Select all measurements that are equal to 200 meters.
(A) 0.002 kilometers
(B) 0.2 kilometers
(c) 20 kilometers
(D) 200 centimeters
(E) 2,000 centimeters

200,000 millimeters
3. Four children played a video game on Saturday afternoon. Emily and Thomas were on one team. Andre and Kim were on the other team. After they finished, they each recorded their scores. Which team had a better combined score?

## Scores

- Andre 3,973 points
- Emily 4,345 points
- Kim 4,409 points
- Thomas 4,289 points
$\qquad$ Date: $\qquad$


## Practice Exercise 16 (cont)

Directions: Read and solve each problem carefully.
4. What are all of the common factors for 12 and 18 ?
(A) 1, 2, 3, 6
(B) 1, 2, 6, 9
(c) $1,2,3,4,6,9$
(D) $1,2,3,4,6,9,12,18$
5. Which statement is true about this figure?

(A) All sides are congruent.
(B) All angles are right angles.
(c) There are exactly two pairs of parallel lines.
(D) There are exactly two pairs of perpendicular lines.
6. A family wants to grill 6 hamburgers for a picnic. Each hamburger weighs $\frac{4}{5}$ of a pound when it is placed on the grill. What is the total weight, rounded to the nearest whole pound, for all the hamburgers?

Use words or numbers to explain how you found your answer.
$\qquad$
$\qquad$
$\qquad$
$\qquad$ Date: $\qquad$

## Practice Exercise 16 (cort)

Directions: Read and solve each problem carefully.

## NASA's 3 Shuttles


7. How many miles were covered by all three spaceships?
(A) 375
(B) 37,500
(c) 375,000
(D) $375,000,000$

Name: $\qquad$ Date: $\qquad$

## Practice Exercise 16 (cont)

Directions: Read and solve each problem carefully.
9. Use the information in this table to create a bar graph that shows the distance covered by these four vehicles.

| Vehicle | Distance <br> Per Year <br> (in miles) |
| :--- | :---: |
| train | 296,000 |
| motorcycle | 23,000 |
| airplane | 378,000 |
| bus | 142,000 |



Vehicle
10. How many total miles were covered by these four vehicles?
11. How many more miles did the three spaceships from the graph, NASA's 3 Shuttles, travel than these four vehicles?


[^0]:    (National Governors Association 2010; Van de Walle, Karp, Lovin, and Bay-Williams 2014)

